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Application Background

Positioning

o Qutdoor : Road Guiding (GPS)

o Indoor : Large Building (WiFi)
Location-based Service

o Web Content Delivery

Behavior Analysis

o Dalily Life (L. Liao et al. AAAI-04, IJCAI-05)

o Health Care
o Scientific Purpose
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Problem Description W

HKUST

= A user with a mobile device walks in an indoor
wireless environment (Covered by WiFi signals)
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Off-the-Shelf Hardware, Only Signal Strength
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Noisy Propagation Channel at 2.4G
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Learning-based Location Estimation l\ ]J
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=

= Two phases: offline Training and online Localization

s  Offline phase — collect samples to build a mapping function F
from signal space S to location space L

Loc. | Time |(AP1,AP2,AP3)
(1,0) |1s |(-60,-50,-40)dB | Training...

(20) |2s |(-62-48.-35)dB | EEEEED> Mapping function F
..... . B
(9.5) |9s |(-50,-35,-42) dB

= Online phase — given a new signal s, estimate the most likely
location | from F

o s=(-60,-49,-36)dB , compute F(s) as the estimated location
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Outline U
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m Introduction to Location Estimation
o Application Background
o Problem Description
o Noisy Characteristics of Propagation Channel
o Basic Framework for Location Estimation

= Related Work
o Microsoft Research’s RADAR (INFOCOM’2000)
o University of Maryland’s Horus (PerCom’2003)

Motivation of Our Approach

N
= The LE-KCCA Algorithm

o Kernel Canonical Correlation Analysis (KCCA)
o Choices of Kernels

Experimental Setup and Result
Strength and Weakness
Future Work i
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Related Works u
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= Microsoft Research’'s RADAR [P. Bahl et al. INFOCOMZ2000]
o K-Nearest-Neighbor Method
o Offline - for each location, compute the signal mean
o Online — estimate location with KNN and triangulation o

= Strength

o Small number of samples could estimate the signal mean well

m Weakness

o Accuracy is relatively low

o Reason — The K nearest neighbors retrieved in the signal space may
not necessarily the K nearest neighbors in the location space

o N,
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Related Works (Cont’) U
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= University of Maryland’s Horus [M. Youssef et al. ,2003]
o Maximum Likelihood Estimation (MLE)
o Offline - for each location, build the Radio Map of each AP
o Online - apply Bayes’ rule for estimation

= Strength
o Accuracy is high

= Weakness
o Need relatively large number of samples

o Reason — More samples are needed for establishing an accurate
Radio Map rather than a signal mean

So.12|

Radio Map B

Signal Strength
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[I\/Iotivation of Our Approach ]
= Observation (Motivated by RADAR)

o Similar  signals may not be nearby locations
o Dissimilar signals may not be far away

® |ldea

o Maximize the similarity correlation between signal
and location spaces under feature transformation

= Goal

o Accuracy as high as possible ( Horus )
o Calibration Effort as low as possible ( RADAR )

)
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Motivation of Our Approach (Cont’)
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[(Kernel) CCA

Canonical Correlation Analysis (CCA)

o  [H. Hotelling, 1936]

o Twodataset XandY

o  Two linear Canonical Vectors Wx Wy
o  Maximize the correlation of proiections

'5‘.1',1.-.’1 — ':"..Wx- X1seees {Wa, Xn))
lE‘y"wy = |lr'- Wy_. }"1.:' R ':lﬁirry- }'r]‘]!-.:']
p = max corr(Szwg, Sywy)
W Wy

(SzWz, Sywy)

= Imax

wawy || Sz W[ Sywyl

» o = max
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Kernel CCA

o [D.R Hardoon, S. Szedmak, and J.
Shawe-Taylor, 2004]

o Two non-linear Canonical Vectors
Wy — :{ ¥ 'ﬁ-’y = }; -_'3
o K is the kernel
X — o(x)
wklx, z) = (olx), ¢lz))

K, K,3

,Il”;"ft‘k’ K2a -3 H&ﬂ -
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LE-KCCA W
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= Offline phase

O

O

Signal strengths are collected at various grid locations.
KCCA is used to learn the mapping between signal and location spaces.
= JA/’sand as are obtained from the generalized eigen-problem
m KIS aregularization term
(K, + v K (K, + 617K o = Ve,

For each training pair (s,, |), its projections

P(ﬂi] = [P1(5¢]~P2|:Hi:| ~~~~~ Priﬁi]]I
on the T canonical vectors are obtained from

P (%) = ¢o(X)'wy_ () = Kiax,
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LE-KCCA (Cont) W
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Online phase

o Assume the location of a new signal strength vector is s

o Again, use
P (%) = ¢o(X)' Wy, ) = Ko,

to project s onto the canonical vectors and obtain
P(g) = [P1(3), Pa(8), ..., Pr(3)]".

o Find the K Nearest Neighbors of P(s) in the projections F(s;) of training
set with the weighted Euclidean distance :

d; =Y 51 A (Pi(8)— Py(s;))?

o Interpolate these neighbors’ locations to predict the location of s

Essentially, we are performing Weighted KNN in the feature space with
which weights are obtained from the feedback of location information.
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Choices of Kernels
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_ HKUST
= Kernel for Signal Space
o Gaussian Kernel to smooth the noisy characteristics
o Widely used : [Roos et al. 2002, Battiti et al. 2002]
= Kernel for Location Space
o Matern Kernel to sense the change in location
o Usedin : GPPS [Schwaighofer et al., 2003]
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Experimental Setup W
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= Test-bed : Department of Computer Science, Hong
Kong University of Science and Technology
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Experimental Result - 1

Accuracy

Data Set
o 65% training
o 35% testing

Error Distance is 3.0m

o LE-KCCA91.6% &
o  SVM 87.8% 3
o MLE 86.1% <
o RADAR 78.8%
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Experimental Result - 2 U
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Reduce Calibration Effort

o Incrementally Use a small subset of the the 65% training data
o Outperform the others using 10-15 samples from each location
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Visualization of Tracking in Both

Signal Space(p-dimension)

“signal from two access points are shown here

%
Physical Space(2-dimension)

Original and Feature Spaces

Legend O signal vector
=) signal boundary
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[Strength and Weakness

Strength
o Higher Accuracy
o Reduced Calibration Effort (Low-cost)

Weakness
o Generally 50-100 times slower than RADAR
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Future Work W
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= Consider Environment Dynamics to Reduce Uncertainty
o J.Yin et al. Adaptive temporal radio maps for indoor location
estimation. PerCom’05
= Consider User Dynamics to Reduce Uncertainty

o M. Berna et al. A Learning Algorithm for Localizing People Based On
Wireless Signal Strength That Uses Labeled and Unlabeled Data.
IJCAI'03

o A. Ladd et al. Robotics-based location sensing using wireless ethernet,
MobiCom’02
= Speed up for Large-Scale Localization

o J. Letchner et al. Large Scale Localization from Wireless Signal
Strength. AAAI'05

o A. Haeberlen et al. Practical Robust Localization over Large-Scale
802.11 Wireless Networks. MobiCom’04
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Thank You

Question ?

—
i
e

~
-
0p)
—



